Well-posedness of the deterministic transport equation with singular velocity field perturbed along fractional Brownian paths
نویسندگان
چکیده
In this article we prove path-by-path uniqueness in the sense of Davie [25] and Shaposhnikov [46] for SDE's driven by a fractional Brownian motion with sufficiently small Hurst parameter H?(0,12), uniformly initial conditions, where drift vector field is allowed to be merely bounded measurable. Using result, construct weak unique regular solutions Wlock,p([0,1]×Rd), p>d classical transport continuity equations singular velocity fields perturbed along paths. The latter results provide systematic way producing examples fields, which cannot treated regularity theory DiPerna-Lions [28], Ambrosio [2] or Crippa-De Lellis [23]. Our approach based on priori estimates at level flows generated sequence mollified converging original field, are uniform respect mollification parameter. addition, use compactness criterion Malliavin calculus from [24] as well supremum estimate time moments derivative flow SDE solutions.
منابع مشابه
Well-posedness for a transport equation with nonlocal velocity
We study a one-dimensional transport equation with nonlocal velocity which was recently considered in the work of Córdoba, Córdoba and Fontelos [4]. We show that in the subcritical and critical cases the problem is globally well-posed with arbitrary initial data in Hmax{3/2−γ,0}. While in the supercritical case, the problem is locally well-posed with initial data in H3/2−γ , and is globally wel...
متن کاملWell-posedness of the transport equation by stochastic perturbation
We consider the linear transport equation with a globally Hölder continuous and bounded vector field, with an integrability condition on the divergence. While uniqueness may fail for the deterministic PDE, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. This seems to be the first explicit example of partial differential equati...
متن کاملA singular stochastic differential equation driven by fractional Brownian motion∗
In this paper we study a singular stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter H > 1 2 . Under some assumptions on the drift, we show that there is a unique solution, which has moments of all orders. We also apply the techniques of Malliavin calculus to prove that the solution has an absolutely continuous law at any time t > 0.
متن کاملWell-posedness of a singular balance law
We define entropy weak solutions and establish well-posedness for the Cauchy problem for the formal equation ∂tu(t, x) + ∂x u 2 (t, x) = −λu(t, x) δ0(x), which can be seen as two Burgers equations coupled in a non-conservative way through the interface located at x = 0. This problem appears as an important auxiliary step in the theoretical and numerical study of the one-dimensional particle-in-...
متن کاملWell-Posedness of Scalar Conservation Laws with Singular Sources
We consider scalar conservation laws with nonlinear singular sources with a concentration effect at the origin. We assume that the flux A is not degenerated and we study whether it is possible to define a well-posed limit problem. We prove that when A is strictly monotonic then the limit problem is well-defined and has a unique solution. The definition of this limit problem involves a layer whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2023
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2023.02.059